Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

DARPA moves forward with two NJ companies on second-phase project for secure radio communications technologies

2/26/2023

0 Comments

 
Basking Ridge, NJ - U.S. military researchers are continuing work with two U.S. companies to develop secure radio frequency (RF) transmitter and receiver technologies to enable the next generation of secure military tactical radio communications. Officials of the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., awarded contracts in January to Peraton Labs Inc. in Basking Ridge, N.J., and to CACI Inc. Federal in Florham Park, N.J., for the next phase of the Wideband Secure and Protected Emitter and Receiver (WiSPER) project.
WiSPER seeks to develop fundamentally disruptive wireless air interface transceiver technology to enable and sustain secure high-bandwidth RF communication links. The WiSPER wideband adaptive air interface also will mitigate impairment from dynamic harsh and contested environments to maintain a stable communication link.

Peraton won a $7.9 million WiSPER phase-two contract on 25 Jan 2023, and CACI won a $10.6 million WiSPER phase-two contract on 23 Jan 2023. Now the companies move to the second phase of the project, which will improve the design, culminating in a transportable implementation and field test.
The radio project's future third phase will further optimize the air interface to demonstrate adaptation to weather and other impairments in a portable prototype implementation.
DARPA awarded WiSPER phase-one contracts in March 2021 to CACI and to Perspecta Labs Inc. in Basking Ridge, N.J. Peraton Labs acquired Perspecta Labs in May 2021. In WiSPER phase-one, the companies carried the WiSPER system architecture through a conceptual design supported by modeling and simulation, culminating in a benchtop implementation and lab test.
Today's military secure tactical radios achieve security by spreading transmitted content over time and operating frequency in attempts to reduce transmitted power density and operate below the adversary's receiver detection limit.
Still, spread-spectrum techniques lack sufficient complexity to evade detection by modern signals intelligence (SIGINT) receivers or interception by compromised devices.
Today's secure military tactical radio systems are vulnerable to hypersensitive and collaborative receivers.
Hypersensitive receivers use cryogenic-cooled energy detectors and cyclostationary processing over prolonged observation time to increase detection sensitivity by reducing uncorrelated noise. This technique reveals chip rate and modulation format to establish spread-spectrum transmissions. Collaborative receivers, meanwhile, involve multi-receiver networks that coherently recombine power to detect the transmitter.
Today's spread-spectrum approaches have several limitations. Narrowband signals are only spread in the time and frequency domains and contain cyclic features, for example. Narrowband RF waveform typically use fixed and limited dynamic range of less than 30 decibels, leading to the inability to remain undetectable while providing persistent communications.
New chaotic waveforms that reduce cyclic features only provide marginal reduction of detectability, require higher signal-to-noise ratios to synchronize and operate, and are not sufficiently featureless to evade detection. Directional beams and reconstruction of coherent scattered signals, in addition, are impractical for today's tactical radios.
While spread-spectrum techniques minimize the signal strength to avoid detection, today's tactical radios face additional operational challenges from channel impairments that reduce the link margin of the radio.
With fixed operational frequency and bandwidth, existing tactical radios provide limited options and margins to sustain persistent transceiver operations under varying and unpredictable natural and man-made channel impairments.
DARPA researchers anticipate that WiSPER capabilities also will provide future U.S. warfighters with a dominant technology advantage over their adversaries. Researchers want radios small enough for portable or ground installations.
WiSPER will be a four-year, three-phase program with an 18-month first phase, an 18-month second phase, and yearlong third phase.
For more information contact CACI International online at www.caci.com, Peraton Labs at www.peratonlabs.com, or DARPA at www.darpa.mil.

0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
222 West State Street
Suite 302
Trenton, NJ 08608
732-729-9619