Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

Let it flow: The ideas, the creativity, the findings, the impacts, the benefits to society

1/28/2018

0 Comments

 
Princeton, NJ - THE RESEARCHERS in Princeton’s Complex Fluids laboratory are sometimes inspired by a cup of coffee or a permanent marker. Such everyday items may seem like odd subjects of inquiry in a lab known for its cutting- edge research, but in fact the coffee — a latte actually — acts as a model system to study pattern formation in liquids, which could lead to applications in food science, and the permanent markers may suggest ways to transfer patterns of micro-fabricated electronics from one surface to another.
Download this article as a PDF
These seemingly unconnected experiments are tied together by the study of fluids and how they move and change in space and over time.
At the head of the lab is Howard Stone, a professor in the School of Engineering and Applied Science, whose mentorship of graduate students and postdoctoral researchers has led to a multitude of papers on topics that have the potential to address societal problems, from coping with climate change to purifying water using the technology that adds fizz to soda.
“I encourage the members of my lab to do things that excite them, things they’re very curious about,” said Stone, Princeton’s Donald R. Dixon ’69 and Elizabeth W. Dixon Professor and chair of the Department of Mechanical and Aerospace Engineering. “It is a little different than how other groups sometimes run, and in part that’s because I’m not focused on trying to solve only one problem. Instead I am serious about seeking new understanding as well as potential applications.”
Stone’s lab attracts students and postdoctoral researchers from around the world, with backgrounds ranging from chemistry and math to physics and engineering. These scholars combine their talents with a lot of energy, laboratory camaraderie and a spirit of exploration, turning creativity into results that have the potential to make a difference in areas such as health and the environment.
Using gelatin to study fracking
Ching-Yao Lai recalls the first time she heard the term “fracking” as a newly arrived graduate student from Taiwan five years ago. “I had absolutely no idea what that was,” she said. She soon became immersed in studying hydraulic fracturing, which involves injecting high-pressure liquids into underground rock to generate fractures that allow oil and gas to come to the surface. But the liquid can also bring contaminants — such as brine, naturally occurring radioactive material and metals — into contact with underground drinking water sources.
“It’s very important to know how fast a fracture grows and how far it can go,” Lai said. To study this, she uses a substance that bears little overt resemblance to rock: a block of gelatin.
Gelatin mimics the brittle and elastic properties of rocks, and it is convenient in other ways. It is trans- parent, so Lai and her co-investigators can see what happens to the liquid and where it goes.



To model fracking in the cube of gelatin, the researchers poke cracks in the springy solid to represent the fissures and faults in the Earth. Then they push mineral oil through the cracks and, while shining a green light on the block to illuminate the spread of the oil, take photos for later measurements of the size and extent of the cracks.
With this experimental system, Lai and colleagues are exploring what happens to liquid injected into the gelatin. Some of the questions are why not all of the injected liquid comes back to the surface, and how much fluid gets trapped in various types of fractures.
One of their next areas of study involves an entirely different type of liquid — foam. Lai is exploring whether foam could be use in place of today’s high-pressure liquids. Foam uses 90 percent less water and may be less likely to travel to groundwater sources.
Tangled fibers for wound healing
At the next lab bench over, Janine Nunes holds a vial of tiny polymer fibers that could someday become wound-healing bandages or provide scaffolding for repairing damaged tissues in the body. Nunes is developing liquids that solidify into small fibers. These fibers could be injected into a damaged part of the body where they then tangle to provide a scaffold on which cells can regrow.

Nunes, an associate research scholar, makes the slender fibers using a device that works sort of like a pasta maker and that fits in the palm of her hand. She injects a polymer liquid into a slender pipe. Then, by sending pulses of ultraviolet light into the device, she converts the light-sensitive liquid into a hair-thin, solid fiber.
By changing the duration of light pulses, Nunes can control the shapes of the fibers. She and Antonio Perazzo, a postdoctoral research associate, found that longer fibers are more likely to entangle, creating a semisolid gel, while the shorter fibers stay suspended in the liquid.
The microfluidic device produces one fiber at a time, but the team plans to improve the process to churn out many fibers at once. She is also exploring what would happen if she mixes in ingredients that make the gel degradable, to make tissue scaffolding or internal bandages that can biodegrade when they are no longer needed.
Arctic ice bridges
Outside the glass doors of the lab, postdoctoral research associate Bhargav Rallabandi sits across from a white-board filled with geometrical figures and equations, the evidence of a day in the life of a theorist. Rallabandi’s latest project is a theoretical model of the formation of Arctic ice bridges.
Ice bridges form when chunks of ice, flowing through a narrow strait between two bodies of land, form a clog. The bridges can prevent ice from flowing south and melting due to warmer temperatures, and may also enable polar bears to reach their hunting grounds.
Using pen and paper, and later, computer simulations, Rallabandi calculated the critical thickness, wind speed and ice compactness necessary for ice bridges to form. The team found that the formation of ice bridges can be understood as a balance between wind stresses that drive motion and frictional stresses in the ice that resist motion. These frictional stresses arise from the motion of ice floes relative to each other and to the land boundaries of the strait. The results were published earlier this year in the journal Physical Review Letters.
“This gives you a way to think about what factors we need to measure in the Arctic to predict ice bridge formation,” Rallabandi said. Now that he figured out how ice bridges form, he plans to tackle the other side of the question: How do they break up?

For the full story: https://discovery.princeton.edu/2017/11/27/let-it-flow-the-ideas-the-creativity-the-findings-the-impacts-the-benefits-to-society/


0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Health Care
    Healthcare
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
10 West Lafayette Street
Trenton, NJ 08608
732-729-9619