Some research institutions, including the Mayo Clinic, have set up on-site printing labs in partnership with such makers of 3-D printers as Stratasys, 3D Systems and Formlabs.
McConnon reports that General Electric Co. and Johnson & Johnson are diving in, too, with GE focused on 3-D printers and translating images from various sources into 3-D objects, and J&J focused on developing a range of materials that can be used as “ink” to print customized objects.
Beyond organ models, the printers are being used in health care to create dental and medical implants, hearing aids, prosthetics, drugs and even human skin.
Research firm Gartner predicts that by 2019, 10% of people in the developed world will be living with 3-D-printed items on or in their bodies, and 3-D printing will be a central tool in more than one-third of surgical procedures involving prosthetics and implanted devices.
According to research firm IndustryARC, the overall market for medical 3-D printing is expected to grow to $1.21 billion by 2020 from about $660 million in 2016.
McConnon reports that though the industry is young, Anurag Gupta, a Gartner vice president of research, says 3-D printing in health care “could have the transformative impact of the internet or cloud computing a few years ago.”
The technology of 3-D printing has been around since the 1980s, but recent advances in software and hardware have made it faster, more cost-efficient and of higher quality. Five years ago, the 3-D printers made by Stratasys could print in one or two materials and one or two colors.
Now they can print six materials simultaneously and create more than 360,000 combinations of textures and colors to better mimic materials ranging from soft tissue to bone, paving the way for wider adoption.
The rise of customized medicine, in which care and medicine is tailored to individual patients, also has helped fuel growth of 3-D printing in health care, as more patients and doctors seek out customized medical devices, surgical tools and drugs.
One of the areas in which the technology may hold particular promise, experts say, is in the manufacturing of drugs in the dose and shape best suited to certain groups of patients.
Aprecia Pharmaceuticals recently launched a 3-D printed epilepsy drug called Spritam, a high-dosage pill that dissolves quickly with a small amount of water and in a shape that is easy to swallow.
Printing whole organs, such as livers and kidneys, remains the Holy Grail, but that is more than a decade away, says Gartner’s Mr. Gupta. Printing smaller pieces of human material, however, has already begun.
For McConnon’s full story, click here.