Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

Four Stevens Faculty Recognized by NSF, Air Force for Research Excellence

2/12/2016

0 Comments

 
Hoboken, NJ ― Four young Stevens faculty have been recognized by the National Science Foundation (NSF) and the Air Force Office of Scientific Research (AFOSR) for outstanding research prowess and potential in areas ranging from space travel to cancer diagnosis.
 
“Stevens is fortunate to attract young faculty of the highest caliber,” notes Provost and University Vice President George Korfiatis of the recent recognition.  “These awards are a reflection of the quality of our new faculty recruits and the bright future they have at Stevens. On behalf of the Stevens community, I would like to congratulate them for this distinction.”
 
Mechanical engineering professor Robert Chang, School of Systems and Enterprises professor Babak Heydari and electrical and computer engineering professor Negar Tavassolian each received NSF Faculty Early Career Development (“CAREER”) Awards, five-year awards given to particularly promising young tenure-track researchers.
​Chang's award will support exploration and improvement of additive biomanufacturing processes used to 3D-print biomaterial-based tissue constructs at small scales for stem cell delivery.  
 
His other research at Stevens includes fundamental work in cell-material interactions for engineered tissue models and translational research on new imaging modalities and image-processing algorithms for deployment in clinical settings such as hospital burn units.
 
Chang believes the CAREER Award reinforces Stevens' new research thrust in biomedical and healthcare areas and a more concentrated effort to strengthen K-20 STEM educational impact, both cornerstones of the university's Strategic Plan.
 
“I am thrilled to work with our dedicated team of students and collaborators to advance the area of additive biomanufacturing by formulating unified process modeling approaches informed by metrology (measurement science),” says Chang.  “In light of the democratization of manufacturing with desktop 3D printers, I think the unique application of creating biotissues is an area of study that will ignite the interest of our students to participate in research and drive future innovation.”
 
“The ultimate goal of any science and engineering research endeavor is to find ideas and concepts that unify our understanding of seemingly disparate phenomena,” he adds.  “This award will support our team’s efforts to advance new methodologies and enabling technologies to address both fundamental questions in the life sciences and translational hurdles in medicine.”
 
Heydari received an NSF CAREER Award to support development of a new theoretical framework based on game theory and complex network methods to model the impact of architecture of products and systems on technological innovation and market competition.
 
In addition, as part of his project, Heydari will create educational materials based on complexity sciences for children's science museum programs in New York City.
 
“We are increasingly relying on complex human-centric, socio-technical systems whose analysis, design and governance need new sets of lenses and perspectives. The traditional dichotomy of soft and hard sciences is disappearing, and we will be dealing with a continuum of methods and perspectives to tackle future problems such as complex systems,” he notes.
 
“Some bridges have already been successfully built between otherwise isolated islands of traditional disciplines, but to go from a handful of bridges to a continuum of tools and methods useful for socio-technical systems requires a concerted effort by the academic community,” Heydari said.  “I am excited that an organization with the caliber of NSF has endorsed the interdisciplinary approach we are taking, and thankful that Stevens has given me this opportunity to define my research in a quite non-traditional way.”
 
Heydari's other research at Stevens includes investigations in modeling hybrid human-autonomous networks; spatial diffusion of risk; and silicon-based communication circuits and systems.
 
Tavassolian received her NSF CAREER Award to begin an immediate project that will apply millimeter-wave technology to biomedical imaging applications in an effort to diagnose skin cancer tumors earlier and more effectively than is currently possible.
 
By dividing bandwidths into channels, each equipped with small antenna units, she proposes to create higher-contrast, better-depth imagery; proof-of-concept experiments will be performed at Massachusetts General Hospital.
 
As part of the project, Tavassolian will also create educational programs in partnership with Liberty Science Center in Jersey City and a new Stevens graduate-level course in the biomedical applications of electromagnetics.
 
“Skin cancer is the most common and fastest-growing of all cancer types, with more than 3.5 million new cases detected and billions of dollars of associated treatment costs in the U.S. last year alone,” she notes.  “Skin cancer is generally diagnosed through visual inspection by a dermatologist, who orders biopsy in cases where cancer is suspected, but visual inspection is subjective and susceptible to human errors. There is a definite need for the innovative, low-cost and portable imaging technology we are offering in this area.”
 
Tavassolian's other work at Stevens includes research on radio frequency and microwave technologies, bioelectromagnetics and micro-electromechanical systems (MEMS) with additional biomedical applications.
 
She previously performed research at MIT's David H. Koch Institute for Integrative Cancer Research, investigating a magnetic relaxation-based platform for non-invasive monitoring of patients' hydration states.
 
Mechanical engineering professor Nick Parziale was also recognized, by the Air Force's Young Investigator Program (YIP), for his work on a novel means of measuring the speed of a gas.
 
Parziale’s three-year project will involve the characterization of high-speed flows of air, nitrogen and other gases that help determine the heating and friction around proposed supersonic and hypersonic vehicles that could potentially travel worldwide in very short times and travel to space more quickly and cheaply than is currently possible.  The research also carries potential defense applications.
 
“I'm really excited about the award and our strategy to help AFOSR answer some fundamental questions about high-speed and reacting shear layers,” says Parziale. “To some extent, it's about trying to take the hypersonic-spaceplane concept from science fiction to reality. It's fun when you get to go to work and try to solve problems that could allow us to travel from New York to London in a half-hour at Mach 10.”
 
Parziale's other work at Stevens includes alternative-energy research deploying and advancing new technical approaches to biomass conversion. 
0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
10 West Lafayette Street
Trenton, NJ 08608-2002
609-858-9507