Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

NJIT Assistant Professor Alice Lee Focuses on ‘A Heart Attack in a Petri Dish’

7/19/2017

0 Comments

 
Newark, NJ — In petri dishes in her campus laboratory at New Jersey institute of Technology (NJIT), Assistant Professor Alice Lee is developing colonies of cardiac cells, formed into chambers, that pump and contract like a human heart.
 
Derived from stem cells, these primitive organs will help her achieve a research milestone:  to observe in microscopic, real-time detail how the heart repairs itself after injury.
 
Lee must first induce an “attack” by damaging the tiny proto-hearts with a frozen rod, thus mobilizing sequential, cell-based repair crews that clear the injury site of debris, and then in a second phase, recruit materials and tools from the neighboring tissue to mend the damage.
​“By developing diseased-tissue models, we’re hoping to gain insights that will allow us to improve diagnoses and therapies for cardiac diseases,” says Lee, an assistant professor of biomedical engineering. “These are techniques that cannot be tested in patients.”
 
Earlier this year, Lee received a five-year Faculty Early Career Development (CAREER) Award from the National Science Foundation (NSF) to advance understanding of the underlying mechanisms of heart tissue repair by cell-based therapy.
 
NSF CAREER awards, described by the agency as among its most prestigious, are highly selective grants that support early-career researchers with “the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization.”
 
In awarding her the grant, the NSF acknowledged “major hurdles” to date in developing cell-based therapies – restoring damaged tissue by deploying transplanted stem cells to the injury site – that derive in part from limited knowledge of the biological mechanisms of the transplanted cells.
 
Existing models have focused almost exclusively on mimicking the healthy cardiac microenvironment with the goal of providing a living surgical replacement. In order to develop alternative therapies, the agency deems her model both novel and necessary.
 
“What is unique about these experiments is the opportunity they provide to see how different cell types in the heart interact during the repair process in the immediate aftermath of a heart attack – the period that offers the best chance for successful cell-therapy interventions,” Lee notes.
 
“Better understanding of diseased tissue can help us to predict how stem cells used in cell-based therapy will integrate and function in the body.”
 
Medical researchers have had little success with these therapies so far, because the injected cells drift away from the injury and fail in their task to rebuild tissue. “They don’t stick to the site, and eventually they die,” Lee says.
 
Unlike most biological tissues, heart cells do not regenerate or proliferate. Following injury, the damaged tissue is not so much restored as slightly reconfigured. It becomes stiffer and less functional.
 
Lee is focusing on the first two stages of repair: an initial phase of about seven days during which the body sends out macrophages, inflammatory cells that clear the site by engulfing and consuming the destroyed tissue, followed by a weeks-long proliferation phase, in which cardiac fibroblast cells, connective cells, become activated and migrate to the region of dead tissue to synthesize new extracellular matrix – the structural molecules that support heart cells – and remodel the tissue.
 
“We’re trying to figure out what biological mechanisms will guide the stem cells used in therapy to the right place and foster their growth there,” Lee explains. She and Pamela Hitscherich, a Ph.D. student in her laboratory, are testing various scenarios in which the heart cells – cardiomyocytes – interact in different sequences with the inflammatory repair cells.
 
A crucial element of this process is ensuring there are enough blood vessels to supply the tissue with the nutrients and energy it needs to grow.
 
“In order to build what’s physiologically correct, we must incorporate vasculature, a functioning network of vessels to feed the new organ cells and permit their growth, and we are still searching for the best strategy to create this tissue,” she says.
 
“It’s difficult to do outside of the body without proper blood flow and signals from other cells and tissues.” She is currently investigating the role of tissue-specific vascular cells and improving a device she created to host vessel-formation experiments.
 
Lee says it has been difficult to fully understand the healing process because of the body’s complexity.
 
“In the case of a heart attack, a series of events, including inflammation, proliferation and remodeling, occur at the damaged heart region,” she explains. “That’s why the in vitro model is critical. It’s a simplified set-up that allows us to study different parameters independently and tease out the problem.”
 
“We want to know, for example, what components in heart tissue prompt the stem cells to adhere and when is the best time to inject them,” she adds. “We can also develop newer therapeutic interventions to help these stem cells home in and ultimately restore the heart function.”
 
About NJIT
 
One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills.
 
With an enrollment of 11,400 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering, and cybersecurity, in addition to others.
 
NJIT is among the top U.S. polytechnic public universities in research expenditures, exceeding $130 million, and is among the top 1 percent of public colleges and universities in return on educational investment, according to PayScale.com. NJIT has a $1.74 billion annual economic impact on the State of New Jersey.
0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
222 West State Street
Suite 302
Trenton, NJ 08608
732-729-9619