Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

PPPL Physicists Propose New Method to Treat Radioactive Waste

1/5/2016

0 Comments

 
Princeton, NJ - According to Raphael Rosen of Princeton Plasma Physics Laboratory Communications, "Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are proposing a new way to process nuclear waste that uses a plasma-based centrifuge. Known as plasma mass filtering, the new mass separation techniques would supplement chemical techniques. It is hoped that this combined approach would reduce both the cost of nuclear waste disposal and the amount of byproducts produced during the process. This work was supported by PPPL’s Laboratory Directed Research and Development Program."
“The safe disposal of nuclear waste is a colossal problem,” said Renaud Gueroult, staff physicist at PPPL and lead author of the paper that appeared in the Journal of Hazardous Materials in October. “One solution might be to supplement existing chemical separation techniques with plasma separation techniques, which could be economically attractive, ideally leading to a reevaluation of how nuclear waste is processed.”
​
The immediate motivation for safe disposal is the radioactive waste stored currently at the Hanford Site, a facility in Washington State that produced plutonium for nuclear weapons during the Cold War. The volume of this waste originally totaled 54 million gallons and was stored in 177 underground tanks.

In 2000, Hanford engineers began building machinery that would encase the radioactive waste in glass. The method, known as “vitrification,” had been used at another Cold War-era nuclear production facility since 1996. A multibillion-dollar vitrification plant is currently under construction at the Hanford site.

To reduce the cost of high-level waste vitrification and disposal, it may be advantageous to reduce the number of high-level glass canisters by packing more waste into each glass canister. To reduce the volume to be vitrified, it would be advantageous to separate the nonradioactive waste, like aluminum and iron, out of the waste, leaving less waste to be vitrified. However, in its 2014 report, the DOE Task Force on Technology Development for Environmental Management argued that, “without the development of new technology, it is not clear that the cleanup can be completed satisfactorily or at any reasonable cost.”

The high-throughput, plasma-based, mass separation techniques advanced at PPPL offer the possibility of reducing the volume of waste that needs to be immobilized in glass. “The interesting thing about our ideas on mass separation is that it is a form of magnetic confinement, so it fits well within the Laboratory’s culture,” said physicist Nat Fisch, co-author of the paper and director of the Princeton University Program in Plasma Physics. “To be more precise, it is ‘differential magnetic confinement’ in that some species are confined while others are lost quickly, which is what makes it a high-throughput mass filter.”

How would a plasma-based mass filter system work? The method begins by atomizing and ionizing the hazardous waste and injecting it into the rotating filter so the individual elements can be influenced by electric and magnetic fields. The filter then separates the lighter elements from the heavier ones by using centrifugal and magnetic forces. The lighter elements are typically less radioactive than the heavier ones and often do not need to be vitrified. Processing of the high-level waste therefore would need fewer high-level glass canisters overall, while the less radioactive material could be immobilized in less costly wasteform (e.g., concrete, bitumen).

For the full story: https://blogs.princeton.edu/research/2015/12/04/pppl-physicists-propose-new-plasma-based-method-to-treat-radioactive-waste-journal-of-hazardous-materials/
 
 
0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
10 West Lafayette Street
Trenton, NJ 08608-2002
609-858-9507