Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

Princeton Part of $40 Million Simons Observatory Collaboration to Investigate the Early Universe

6/16/2016

0 Comments

 
Princeton, NJ — Princeton University researchers will have an integral role in the Simons Observatory, a new astronomy facility in South America recently established with a $38.4 million grant from the Simons Foundation.
 
The observatory will investigate cosmic microwave background (CMB) radiation to better understand the physics of the Big Bang, the nature of dark energy and dark matter, the properties of neutrinos, and the formation of structure in the universe.
 
The project is a collaboration between Princeton, the University of California-San Diego, the University of California-Berkeley, the University of Pennsylvania and the Lawrence Berkeley National Laboratory, all of which will provide financial support.
 
The Heising-Simons Foundation will provide an additional $1.7 million of support. The observatory will be located in Chile's Atacama Desert, a longtime site for astronomy and CMB research because of its elevation and near absence of precipitation.
​The project manager for the Simons Observatory will be located at Princeton, and Princeton faculty also will oversee the development, design, testing and manufacture of many of the observatory's camera components.
 
A critical element in wringing new cosmological information from the CMB — which is the glow of heat left over from the Big Bang — is the use of densely packed, very sensitive cryogenic detectors.
 
Princeton's expertise with the detector development for the Atacama Cosmology Telescope in Chile and other observatories will complement the collaborative effort of the Simons Observatory, said Suzanne Staggs, Princeton's project lead for the observatory and the Henry DeWolf Smyth Professor of Physics.
 
“Our work will involve the assemblies at the heart of the camera,” Staggs said.  “We've historically been closely involved in bringing cutting-edge detectors from the concept stage to deployment in the field, especially for our projects in the Atacama, so it's a natural thing for us to focus on in this project.  With this effort, we're going to further develop our expertise in the department in the field of large-scale sensitive instrument construction.”
 
Of particular importance is the University's large dilution refrigerator-based camera testing facility located in the Department of Physics.  
 
The CMB has a temperature of 3 degrees Kelvin (-454.27 degrees Fahrenheit), and CMB detectors are more sensitive the colder they are. The Princeton facility will test the Simons Observatory equipment at a frosty 80 millikelvin, or eighty one-thousandths of a degree above absolute zero.
 
The extraordinarily rapid expansion of space during “inflation,” the epoch immediately after the birth of the universe, generated gravitational waves.  These would have induced a very small, but characteristic, polarization pattern in the CMB at radio wavelengths that can be detected by specially designed telescopes and cameras.
 
“A key target of this observatory is the earliest moments in the history of the universe,” said Mark Devlin, a cosmologist at the University of Pennsylvania and the project spokesperson.  “While patterns that we see in the microwave sky are a picture of the structure of the universe 380,000 years after the Big Bang, we believe that some of these structures were generated much earlier by gravitational waves produced in the first moments of the universe's expansion.”
 
A detection of this type of signal, known as “B-mode polarization,” would measure the energy scale associated with inflation, which could be as much as 1 trillion-times higher than the energy accessible in the largest particle accelerators.  Detection also could provide evidence for a link between quantum mechanics and gravity.  Understanding the link between these two powerful theories is the focus of string theorists and others studying fundamental physics.
 
Staggs said the mission of the Simon Observatory builds on Princeton's long history of advancing the understanding of the CMB through the work of researchers such as James Peebles, the Albert Einstein Professor of Science, Emeritus, and professor of physics, emeritus, and the late Princeton physicist Robert Dicke.
 
NASA's Wilkinson Microwave Anisotropy Probe (WMAP), a joint project with Princeton that measures temperature changes in the CMB, is named in honor of late professor and team member David Wilkinson.
 
WMAP team members and Princeton faculty Lyman Page, the James S. McDonnell Distinguished University Professor in Physics and physics department chair, and David Spergel, the Charles A. Young Professor of Astronomy on the Class of 1897 Foundation and chair and professor of astrophysical sciences, will also participate in the Simons Observatory.
 
“The Simons Observatory is a tremendous opportunity to build on work that dates back to the 1960s at Princeton with the insights of Dicke and Peebles, and the pioneering experimental work of Wilkinson,” Staggs said. “Across the country and the world, the CMB field has been spurred on by visionary theorists and creative experimentalists.”
 
In addition to searching for B-mode polarization, the Simons Observatory will study how the light from the CMB is deflected by the intervening structure in the universe.
 
The Simons Observatory also will identify thousands of clusters of galaxies, the largest gravitationally bound objects in the universe. Where and when these massive objects formed is a strong function of the same set of cosmological parameters, providing an independent check of their values.
 
“The CMB is like a gorgeous painting with elaborate details that reveal more and more the closer you look at it,” Staggs said. “It captures the state of the universe some 14 billion years ago, and that state carries evidence of the history up to that point. But that's not all — the CMB carries traces of its own journey through the last 14 billion years too!”
 
The Simons Observatory is designed to be an important step toward the experiment CMB-S4, which will aim to extract the full measure of cosmological information in CMB fluctuations accessible from the ground. The project is envisioned to have telescopes at multiple sites including the Atacama Desert.
 
The University of Pennsylvania contributed to this story.
 
0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
222 West State Street
Suite 302
Trenton, NJ 08608
732-729-9619