Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

Princeton University Research Tracks Interplay of Genes and Environment on Physical, Educational Outcomes

8/5/2016

0 Comments

 
Princeton, NJ — Princeton University’s Michael Hotchkiss reports that the course of the 20th century, genes began to play a greater role in the height and body mass index (BMI) of Americans, while their significance decreased in educational outcomes and occurrence of heart disease.
 
The findings, from research by Princeton sociologist Dalton Conley and colleagues, shed new light on how the genetic and environmental landscape of American society has changed over the past century, and highlight the power of combining new genetic tools with traditional social science research.
 
The researchers utilized demographic data and genetic information on nearly 9,000 Americans born between about 1920 and 1955 that was collected as part of the Health and Retirement Study, which began tracking a representative sample of older Americans in 1992.
 
They compared a million different DNA markers for each participant against genetic signatures that highlight parts of the genome known to affect outcomes such as height, BMI, education and heart disease.  
 
By tracking how closely the participants' outcomes matched their genetic predisposition, a picture emerged of how the significance of genes changed over the 20th century.
​“We now have genetic signatures that can strongly predict education, height, BMI and heart disease," said Conley, the Henry Putnam University Professor in Sociology.
 
"So, we used data on Americans born from the 1920s to the 1950s to examine how predictive genes were in these areas,” Conley said.  “What we found were these significant trends in the role of genetics, upward for BMI and height and downward for education and heart disease."
 
The research is detailed in an article titled "Changing Polygenic Penetrance on Phenotypes in the 20th Century Among Adults in the US Population" published online Tuesday, July 26, in the journal Scientific Reports. Conley co-authored this study with Thomas Laidley of New York University, Jason Boardman of the University of Colorado-Boulder and Benjamin Domingue of Stanford University.
 
"It has only recently become possible to use DNA to (partially) predict outcomes such as height, BMI, heart disease and educational attainment," said Daniel Benjamin, an associate professor of economics at the University of Southern California whose research incorporates genetic data into economics research but wasn't involved in this study.
 
"This paper,” Benjamin said, “is one of the first to use these methods to examine how the effects of genes have changed in the U.S. over the 20th century. It helps shed light on the complex interplay of genes and environments in shaping people's outcomes."
 
Conley said it wasn't surprising to find that the role of genes in determining height and BMI increased, as food scarcity became a less prevalent environmental impact on such outcomes.
 
"If you were born in the Great Depression, no one had enough food and it didn't matter what your genotypic weight would be because everyone was restrained," Conley said. "Today, average weight has gone up, but the effect of your genetic signature in predicting your weight is also more powerful in recent birth cohorts."
 
The reasons genes played less of a role in educational outcomes over time are less clear, Conley said. One possibility is that the increase in educational opportunities over the 20th century may have lessened the need for people to have strong genetic predisposition to succeed academically, he said.
 
Conley said the education finding rebuts the idea, popularized by the 1994 book "The Bell Curve," that achievement in modern society is mostly dependent on innate ability.
 
"We asked if the genetic signature for cognitive ability and educational attainment predict better now or in the past. It predicted better in the past, so it's going in the opposite direction of what 'The Bell Curve' argued," Conley said.
 
This research fits into Conley's broader research portfolio, which focuses in part on the intersection of genes and the environment. Work in this area is the focus of a book by Conley and Jason Fletcher of the University of Wisconsin-Madison titled "The Genome Factor: What the Social Science Genomics Revolution Reveals about Ourselves, Our History, and the Future," which will be published early next year.
 
"We're all responding differently to environmental influences and shocks happening to us all the time in society, but we haven't had any idea who was going to respond how," Conley said. "Now we're uncovering the genetic tools needed to answer those questions."
 
Support for the research was provided by the Russell Sage Foundation, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health, the Office of Behavioral and Social Sciences Research, and the University of Colorado Population Center.
 
0 Comments



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Health Care
    Healthcare
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
10 West Lafayette Street
Trenton, NJ 08608
732-729-9619