Innovation New Jersey
  • Home
  • Our Coalition
    • Contact Us
  • News
  • Resources
    • State Supports
    • Federal Supports
    • Higher Ed Supports
  • Join Us

Innovation News

Everything Innovation. Everything New Jersey.
Follow us and stay connected.

Rutgers Research Finds Promising Therapy for Muscular Dystrophy Based on Adult Stem Cells

8/4/2015

1 Comment

 
New Brunswick, NJ - A new study recently published in the journal ACS Nano revealed a new technique to trigger muscle cell differentiation from adult stem cells using a genetic approach. The study is entitled “Inducing Stem Cell Myogenesis Using NanoScript” and was conducted by researchers at Rutgers, The State University of New Jersey in the United States and the Kyoto University in Japan.
Stem cell therapies are based on the use of stem cells, undifferentiated cells that have the remarkable potential to differentiate into several different specialized cell types, including cells from the skin, bone and muscle. Stem cell therapies are considered promising strategies that hold a great therapeutic potential for several medical conditions, from spinal cord injuries to cancer. Stem cells can, however, be difficult to control. Researchers have now reported a new method that mimics the body’s natural strategy to program stem cells.

Transcription factors are key proteins that play an important role in the regulation of gene expression and that coordinate stem cell differentiation. In the study, researchers developed a strategy to program and differentiate stem cells using a nanoparticle-based artificial transcription factor called NanoScript. The NanoScript system is composed of a gold nanoparticle and small molecules that mimic the multiple domains of transcription factors. In this way, NanoScript is able to mimic the structure and function of transcription factor proteins.

In the study, researchers used the NanoScript to mimic the body’s natural transcription factor that induces muscle-cell growth (myogenesis) – myogenic regulatory factors (MRFs). The generated NanoScript-MRF was found to be stable in physiological environments and to localize within the nucleus. Interestingly, the NanoScript-MRF induced the differentiation of adipose-derived adult stem cells into mature muscle cells in 7 days, so that fat tissue actually became muscle.

The team reports that these findings are especially important as they can be valuable for the development of treatment strategies for patients with muscular disorders, as is the case of muscular dystrophy, a condition characterized by a progressive skeletal muscle weakness that leads to the degeneration of muscle cells and tissues, compromising locomotion and also respiratory and cardiac functions.

According to a news release, researchers report that the NanoScript system is a safe and powerful tool and that it can be potentially designed to grow other cell types besides muscle, expanding the medical possibilities offered by the system.

1 Comment
Linda Soltis
8/5/2015 02:43:36 am

Promising new therapy provides hope for those suffering from Muscular Dystrophy (MD) and other diseases that weaken the musculoskeletal system!

Reply



Leave a Reply.

    Do not miss a single innovative moment and sign up for our newsletter!
    Weekly updates


    Categories

    All
    3D Printing
    Academia
    Acquisitions
    Aerospace
    Agriculture
    AIDS
    Algae
    Alumni
    Animals
    Architecture
    Astrophysics
    Autism
    Awards
    Big Data
    Bioethics
    Biofuel
    Biomedical
    BioNJ
    Bioterrorism
    Bit Coins
    Brain Health
    Business
    Camden
    Cancer
    CCollege
    Cellular
    Centenary
    Chemistry
    ChooseNJ
    Climate Change
    Clinical Trials
    Cloud Tech
    Collaboration
    Computing
    Congress
    Coriell
    Council On Innovation
    Crowdfunding
    Cybersecurity
    DARPA
    Defense
    Degree
    Dementia
    Dental Health
    DOC
    DOD
    DOE
    Drew
    Drones
    Drug Creation
    Einstein's Alley
    Electricity
    Energy
    Engineering
    Entrepreneurship
    Environmental
    FAA
    Fairleigh Dickinson
    FDA
    Federal Budget
    Federal Government
    Federal Labs
    Federal Program
    Finance
    Food Science
    Fort Monmouth
    Fuel Cells
    Funding
    Genome
    Geography
    Geology
    Global Competition
    Google
    Governor Christie
    Grant
    Hackensack
    HackensackUMC
    Healthcare
    Health Care
    HHS
    HINJ
    Hospitals
    Immigration
    Incubator
    Infrastructure
    International
    Internet
    Investor
    IoT
    IP
    IT
    Jobs
    Johnson & Johnson
    K-12
    Kean
    Kessler
    Legislation
    Logistics
    Manufacturing
    Medical Devices
    Med School
    Mental Health
    Mentor
    Microorganisms
    Molecular Biology
    Montclair
    NAS
    Neuroscience
    Newark
    New Jersey
    NIFA
    NIH
    NIST
    NJBDA
    NJBIA
    NJ Chemistry Council
    NJCU
    NJDOLWD
    NJEDA
    NJEDge
    NJHF
    NJII
    NJIT
    NJMEP
    NJPAC
    NJPRO
    NJTC
    Nonprofit
    NSF
    OpEd
    Open Data
    OSHE
    OSTP
    Parasite
    Patents
    Paterson
    Patients
    Perth Amboy
    Pharma
    POTUS
    PPPL
    Princeton
    Prosthetics
    Ranking
    Rare Disease
    R&D Council
    Report
    Resiliency
    Rider
    Robotics
    Rowan
    Rutgers
    SBA
    Seton Hall
    Siemens
    Smart Car
    Smart Cities
    Software
    Solar
    Space
    SSTI
    Startup
    State Government
    STEM
    Stevens
    Stockton
    Subatomic
    Supports
    Sustainability
    Taxes
    TCNJ
    Teachers
    Telecom
    Therapy
    Thermodynamics
    Transportation
    Undergraduate
    USEDA
    Verizon
    Video Game
    Virtual Reality
    Water
    WHO
    William Paterson
    Women In STEM
    Workforce Development

Home   Coalition   News   Resources   Events   Join Us
Picture
Innovation New Jersey Coalition
10 West Lafayette Street
Trenton, NJ 08608-2002
609-858-9507