"These two projects push the boundaries of what is currently possible, and each aims to develop an entirely new technology that fulfills a demonstrated need in research or in society," said Princeton's Dean for Research Pablo Debenedetti, the Class of 1950 Professor in Engineering and Applied Science and professor of chemical and biological engineering. "The Schmidt family, through their generosity, enables Princeton to fund projects that involve risk-taking, knowing that with risk comes the potential for tremendous rewards."
The winning projects were selected following a competitive submission process that included review by a panel of University referees and external consultants. The projects were evaluated on the overall quality and innovative nature of the research being proposed as well as the significance and likely impact on the field.
Quantum computers harness the extraordinary potential of quantum physics, which affects extremely small objects at low temperatures, to conduct calculations that ordinary computers cannot begin to solve. Yet achieving the goal of building such a computer has remained out of reach because such devices are extremely sensitive to any environmental disturbances.
Three researchers in the Department of Physics have been awarded $835,000 to harness quantum phenomena involving an exotic particle known as the Majorana fermion as the basis of a quantum computer.
The research team is composed of B. Andrei Bernevig, associate professor of physics; N. Phuan Ong, the Eugene Higgins Professor of Physics; and Ali Yazdani, professor of physics. Together, the three will explore methods for making a computational device that uses Majorana quasi-particles as quantum bits, or qubits, which are analogous to the bits used in today's computers.
Majorana fermions can act as the basic units of quantum computation — replacing the ones and zeros in today's computers — because their unique composition makes them immune to interference from the outside world. First proposed by physicist Ettore Majorana in the 1930s, the elusive particle was directly observed only recently.
Last fall, Yazdani's team, in collaboration with Bernevig, made the first direct observation of Majorana fermions at the ends of a nanometer-thin wire made of iron embedded on a superconducting surface made of lead. The team captured images of the particle using scanning tunneling microscopy and published the results in the journal Science.
For the full story: http://www.princeton.edu/research/news/features/a/?id=14734